### U.S. Department of Energy Carbon Sequestration Program



6<sup>th</sup> Annual Conference on Carbon Capture and Sequestration:

Capture-Ready Requirements and Benefits:
A Possible Step Forward to
Carbon Dioxide Abatement

José D. Figueroa, MBA, PMP

Sean I. Plasynski, Ph.D., MBA

Pittsburgh, PA May 7-10, 2007

**National Energy Technology Laboratory** 





#### **Outline**

- What is a Capture Ready Power Plant?
- Capture Technology Developers Provide Guidance
- Overview of Capture-Ready Discussions
- U.S. CO<sub>2</sub> Capture Market
- Should Capture-Ready be considered?
- Closing Thoughts



# What is a Capture-Ready Power Plant?



#### What is "CO<sub>2</sub> Capture Ready"?

- There is no one agreed upon definition.
- Easy Requirements:
  - Space on site and in critical access locations to build CO<sub>2</sub> capture plant and make connections.
  - Design study for adding CO<sub>2</sub> capture.
- Challenging Requirements:
  - Optional pre-investments to reduce future costs, improve performance, etc.
    - Extra/modified equipment
    - Plant siting to reduce sequestration costs
    - Choice of base plant











## Generic Requirements for Retrofit and Greenfield Capture-Ready Application

# MINIMIZE COST BUT PERFORM AS MUCH AS POSSIBLE DURING PLANNED OUTAGES

- Perform an engineering feasibility study
  - Involve Boiler, ASU and Turbine manufacturers
  - Estimate planned outage schedule with and without Capture-Ready
  - Communicate with Permitting Authorities
- Identify existing or procure land requirements for CO<sub>2</sub> Capture and compression on-site
- Identify a CO<sub>2</sub> market, either sale or disposal, in proximity of the power plant
- Improve or specify the most efficient power plant equipment to minimize the parasitic energy loss associated with CCS
- Develop new power plant CCS operating procedures
- Identify how the plant shall maintain power/grid parity with CCS implementation

#### **Technology Developers Provide Guidance**

#### Oxycombustion:

- -Burners designed for air and oxygen firing
- Air and Oxygen operation
  - Boiler design flexibility
  - Optimize air heater design
- Minimize air infiltration to reduce purification step
- Optimize fans for recycled flue gas
- -Space requirements needed for recycle ductwork
- WFGD enhancement designed or retrofitted for additional SO<sub>2</sub> control, if needed.



#### **Technology Developers Provide Guidance**

#### Post Combustion:

- VERY PLANT AND TECHNOLOGY SPECIFIC
  - Engineering feasibility study required for technology selection based on site specific criteria
- Availability of real estate for future retrofit of capture technology
- Design or retrofit for piping and control system routing as needed
- Turbine steam extraction provisions identified
  - Implementation is optional
- Design or retrofit for additional fan requirements due to increased pressure drop in the flue gas pathway
- WFGD enhancement designed or retrofitted for additional SO<sub>2</sub> control, if needed.



## **Technology Developer Provides Guidance Pre-combustion**





Modifications for CO<sub>2</sub> capture: larger ASU & gasifier; shift reactor, CO<sub>2</sub> absorption system, CO<sub>2</sub> compressor and dryer, gas turbine capable of H<sub>2</sub> fuel, steam cycle



Source: Praxair

#### **Capture-Ready Discussions**

- Three Camps: Against, For and Undecided
- Against:
  - No benefit in Capture-Ready indicated by Some researchers:
    - No regulations mandating CO<sub>2</sub> environmental control
    - Time value of money does not justify capture ready application
    - Future CO<sub>2</sub> capture technologies improvements warrant a wait and see approach
- For:
  - Benefits exist if you look beyond the plant fence line
- Undecided:
  - Generally confused on a course of action due to a lack of clear Capture-Ready definition.
    - A definition may not be possible due to the number of variables associated with Government, Corporate, NGO and Individual perspectives associated with the Capture-Ready Concept



### What is the CO<sub>2</sub> Capture Market?

- Total 9,877 units installed in the U.S.
  - 337 GW of coal-fired units
  - 422 GW of gas-fired units
  - 64 GW of oil-fired units

- 423 existing coal-fired power plants
  - Comprised of 1,089 boiler units
  - Generate 323 GW (Phase 1&2)
  - Emit 1,917.2 million metric tons of CO<sub>2</sub>



The market potential for capture-ready is significant and dependent on regulations and corporate environmental stewardship?

Fossil Power Generation Technology Types



Source: EIA, UDI, EPA

#### What is the CO<sub>2</sub> Capture Market?



# Why the Need to Consider Capture-Ready Implementation

| Energy Penalty due to CO <sub>2</sub> Capture  | 10%     | 20%     | 30%     | 40%     |
|------------------------------------------------|---------|---------|---------|---------|
| Target Market, GW                              | 184     | 184     | 184     | 184     |
| Fleet CO <sub>2</sub> Reduction, %             | 50.2    | 49.2    | 47.9    | 46.3    |
| New Capacity Req'd, GW                         | 25.5    | 57.5    | 98.5    | 153.3   |
| Additional Coal Req'd., tons x 10 <sup>3</sup> | 79,940  | 179,864 | 308,338 | 479,637 |
| Cost of New Capacity, MM\$                     | 45,975  | 103,444 | 177,332 | 275,850 |
| Cost of CO <sub>2</sub> Retrofits, MM\$        | 91,950  | 91,950  | 91,950  | 91,950  |
| Total New Cost, MM\$                           | 137,925 | 195,394 | 269,282 | 367,800 |

Current Energy Penalty of CO<sub>2</sub> BACT MEA Absorption System



## **Should Capture-Ready Be Considered?**



#### "Capture Ready" Approach

#### Existing and Greenfield power plants could be made capture ready by:

- determining the requirements to meet the status of "Capture Ready",
- perform only the necessary modifications to accept a CO<sub>2</sub> capture system over one or several planned outages.
- Verification of capture-ready status through an auditable process

#### Benefits:

- This approach could minimizes the need for an extended costly outage during implementation.
- Should CO<sub>2</sub> regulations be enacted:
  - Technology Developers and Plant Manufacturers are more likely to meet the needs of those plants that are capture ready to their type of technology.
- Reduces the potential CO<sub>2</sub> liability risk due to the Sarbanes-Oxley Act of 2002
- Potentially increases the opportunity for market analyst ratings to be higher
  - Due to a corporate approach to mitigating their CO<sub>2</sub> liability risk over others in the sector that are not.

There are externalities associated when considering if capture ready can meet your needs. Consider them all before deciding.



#### **Closing Thoughts**









#### Acknowledgements

- Alstom Power
- Babcock & Wilcox Corporation
- Imperial College UK
- Praxair
- Research Triangle Institute International



#### **Additional Information**





http://www.netl.doe.gov/technologies/carbon\_seq/index.html

### **Questions?**

Sean I. Plasynski, Ph.D., MBA

José D. Figueroa, MBA, PMP

